
Manifest V3
devlin@chromium.org

Status: DRAFT. This document may be updated with additions, modifications, or
removals.

Updated: November 18th, 2018
This doc on the google intranet: ​go/manifest-v3

https://crbug.com/896897
THIS DOCUMENT IS PUBLIC

Objective

Background

Motivation
Goals

Security
Privacy
Performance

Summary of Changes
P1
P2
API Changes

P1 Changes
Background Process

Summary
Description

Restricting Origin Access
Summary
Description

Remotely-Hosted Code
Summary

Cross-Origin Communication
Summary
Description

Manifest Host Permission Specification
Summary

http://go/manifest-v3
https://crbug.com/896897

Description
Remove Support for NaCl/PNaCl

Summary
Description

Promise-Based APIs
Summary
Description

P2 Changes
Web-Accessible Resource Hardening

Stricter Resource Restrictions
Unique Identifiers

Dynamic Content Scripts

API Changes
WebRequest

Summary
Description

DeclarativeNetRequest
Summary
Description

Browser Action and Page Action
Summary
Description

chrome://favicon API
Summary
Description

Capturing APIs
APIs Replaced by the Web
API Updates For Service Worker
Deprecated API Methods
Unused, Unpopular, and Limbo APIs
Miscellaneous API Changes

i18n.getMessage

Migration

Declined Changes
Storage API
Extension Messaging
Script Injection Main World Capabilities

Objective
This document describes a large set of planned changes to the Chrome Extensions platform,
ranging from core features to specific APIs, with the motivation of increasing security, privacy,
and performance for extensions. These changes will be bundled with a new manifest version.
Once announced and implemented, it will eventually be required for all extensions over a year+
rollout process.

See the summary of changes ​here​.

Background
The extension ​manifest version is a mechanism for restricting certain capabilities to a certain
class of extensions. These restrictions can be in the form of either a minimum version or a
maximum version. Restricting to a minimum version allows newer APIs or capabilities to only
be available to newer extensions, while restricting to a maximum manifest version allows older
APIs or capabilities to be gradually deprecated. The implication is that eventually support for
old manifest versions is removed, allowing us to fully remove those older capabilities. This is
one of the most effective and clear, though heavy-weight, mechanisms for making breaking
changes to the extensions platform.

The manifest version is specified through the ​"manifest_version" key in an extension's
manifest.json​ file, and is a single integer value.

We have incremented the manifest version once before, from manifest version 1 (which was
implicit and wasn't actually specified) to manifest version 2. This introduced a number of
breaking changes (many of these changes can be seen ​here​), including requiring resources
exposed to web pages to be specified in a ​web_accessible_resources section, adding a
default CSP (Content Security Policy), and changing the format of the ​page_action and
background​ entries in the manifest.

Motivation
A new manifest version (which will be gradually required by extensions) is one of the most
effective ways to make breaking changes and enforce certain restrictions. There are a number
of capabilities, practices, and APIs that extensions use that we want to migrate away from due
to their negative impact on the user experience. We also plan to restrict new APIs and features
to the new manifest version, providing additional incentive for extensions to migrate.

https://developer.chrome.com/extensions/manifestVersion
https://developer.chrome.com/extensions/manifestVersion#manifest-v1-changes

The current extensions platform has a number of issues in the areas of performance, security,
privacy, and ergonomics. By implementing a new manifest version, we can enforce certain best
practices, ban negative practices, and provide a clear migration path for developers.

Goals
Developers should fall into a pit of success: writing a secure, performant, privacy-respecting
extension in Manifest V3 should be easy, while writing an insecure, non-performant, or
privacy-leaking extension should be difficult. As a corollary to this, we should have higher
confidence in the quality of a Manifest V3 extension, opening the door to ideas like actively
recommending extensions to users.

Security
Implementing an extension in Manifest V3 should provide strong security guarantees, both from
outside attackers (targeting the extension) and from malicious extensions. The extension
should be protected from outside attackers (e.g., malicious websites trying to hijack an
extension through ​XSS​). Additionally, users should feel confident in installing an extension and
be reasonably assured that the extension cannot easily cause significant, lasting damage.
Finally, Manifest V3 should increase our ability to audit extensions using automated systems
(like Navitron - ​internal​, ​public​) and manual review processes.

Privacy
Users should have increased control over their extensions. A user should be able to determine
what information is available to an extension, and be able to control that privilege.

Performance
Extensions implemented in Manifest V3 should be performant. Long-running background
processes should not be allowed. APIs should be guaranteed to be fast and efficient, and
non-performant misuse of these APIs should be difficult.

Summary of Changes
The ​TL;DR​. More details for these are provided below.

P1
Background Process:​ Migrate from event/persistent background pages to Service Workers.
Restricting Origin Access:​ Migrate to an ​activeTab​-style model, where access is granted at
runtime.
Remotely-Hosted Code:​ Disallow extensions from using remotely-hosted code.

https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
http://navitron/
https://pdfs.semanticscholar.org/0c24/6863ee7d0513cdc2cebff9b173cd4bdc8134.pdf

Cross-Origin Communication:​ Content scripts share the same cross-origin communication
rules as the page. Extension pages can make cross-origin requests to any site they have
access to.
Manifest Host Permission Specification: ​Host permissions will be specified in a new
host_permissions​ manifest key; ​permissions​ will only be used for API permissions.
Promise-Based APIs:​ Support promise-based APIs.

P2
Web-Accessible Resources:​ Require all resources that will be committed in a non-extension
context to be specified in the web accessible resources and support dynamic resource URLs.
Dynamic Content Scripts: ​Provide more capabilities to extensions to support dynamic content
scripts.

API Changes
WebRequest:​ Restrict the blocking capabilities of the ​webRequest​ API.
DeclarativeNetRequest:​ Launch ​declarativeNetRequest​, which provides an alternative to
the blocking capabilities of ​webRequest​.
Browser Action and Page Action:​ Merge ​browserAction​ and ​pageAction​ into a single
action​ API.
chrome://favicon:​ Migrate the ​chrome://favicon​ capabilities to a new ​chrome.favicon​ API.
Capturing APIs: ​Coalesce capturing capabilities from ​tabs​, ​pageCapture​, ​tabCapture​, and
desktopCapture​ APIs into a single ​capture​ API.
Remove APIs replaced by the Open Web Platform:​ Remove any APIs whose functionality is
now available on the Open Web Platform.
Update APIs for ServiceWorker-based processes: ​Update APIs for use with
ServiceWorker-based processes, especially those that assume running on the main thread.
Remove Deprecated APIs: ​Remove any publicly-deprecated APIs.
Miscellaneous API Changes:​ Other API updates for performance, utility, or ergonomics.

P1 Changes
The following are significant changes to the extensions platform or core APIs, which are
currently being planned as part of Manifest V3.

Background Process

Summary
In Manifest V3, the only allowable background presence type will be ServiceWorkers.

Description
Many extensions have a form of "background" process. This process allows the extension to
perform operations outside of a given tab or visible web contents, as well as react to different
events. Most APIs are also restricted to extension processes, which are commonly (though not
exclusively) the background process. As an example, an email-checking extension would use
its background process to communicate with the email server and check the number of unread
emails for an account, and could then update the user-visible UI with the result. This way, the
UI is up to date, even if the user does not have a tab open to the extension. This is often
desired or even critical to the extension's usefulness; in the case above, if the extension
required a tab, it might be no better than always having an email tab open.

There are currently two options for the type of ​extension background processes​: persistent
background pages and event pages (also known as "lazy" background pages). Both of these
are essentially a web page, complete with DOM, HTML capabilities, and JavaScript, that runs
outside the view of the user.

A persistent background page runs from the moment Chrome starts until it shuts down. This
has the advantage of making development easy (state is easy to keep, at least in a single run,
since it is never destroyed) and reducing "lag time" in extension responses, since the process is
always in a ready state, able to respond to relevant events or inputs. It has the disadvantage
that the extension is always consuming memory, CPU, and other resources (including the
process itself), even when it is not performing any work. In the example extension above, even
if there is no email coming in, the extension would be running 100% of the time that Chrome is
open.

An event page is created in response to a certain event occurring. The extension registers for
the events it wishes to respond to (such as tab creation), and is kept alive while doing work or
responding to events. When the extension is not doing work and not responding to events, the
event page is suspended, allowing the resources and the process to be reallocated to a different
task. This has the obvious advantage of being more resource-friendly, but has the
disadvantage that the extension will be slower to respond to an event if the process needs to be
started first.

Event pages are almost always preferable to persistent background pages, since they allow
valuable resources to be returned to Chrome (or the system) when the extension is not active.

The web has evolved significantly since event pages were first implemented, and now websites
can create ​ServiceWorkers​. ServiceWorkers are very similar to (and were ​motivated by​) event
pages. Each is temporal, being set up and torn down in response to certain events, each allows
the client to register for different relevant events, and each is a background-running presence
that is unseen by the user.

https://developer.chrome.com/extensions/background_pages
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://www.w3.org/TR/service-workers-1/#ref-for-dfn-service-worker

We plan to ​replace background pages with ServiceWorkers​, registered at install time and
granted access to extension APIs. The concepts will be more familiar to developers (both going
from extensions to the web and the web to extensions), since the mechanisms will be largely
the same. We will be able to reduce the amount of extension-specific code since, instead of
implementing a custom background-running presence, we can extend the existing
ServiceWorker context. Most importantly, the platform will evolve with the open web; as
improvements to ServiceWorkers and the web platform are made, the extensions platform
benefits from those same improvements.

Restricting Origin Access

Summary
In Manifest V3, host permissions will be granted by the user at runtime (similar to ​activeTab​,
but with options for the user to choose to always run on a specific site or all sites), rather than
install-time.

Description
Origin access permissions are used to determine which sites an extension can interact with.
This affects many APIs, including script injection, the webRequest API, cookies, and others.
These can be used for any number of purposes, from ​ad blocking to ​accessibility to ​website
enhancement​ and others.

Extensions can request different host patterns and scopes in the manifest. They can request
specific hosts (​https://google.com​), host patterns (​https://*.google.com​, allowing access
on all google.com domains and subdomains), or even request permission to all sites
(​<all_urls> or ​*://*/* for all HTTP/HTTPS sites). The latter allows the extension to inject
scripts on, intercept network requests from, and read cookies for any domain, including social
networks, financial websites, corporate sites, etc. - all without any further indication or
permission from the user.

In some cases, this broad permission can be necessary to the extension's functionality (most
content blocking is desired to run on every site, as are accessibility features). In other cases,
extensions request this permission even if they don't need it, partially because there is very little
penalty for doing so now and partially because requesting permissions after installation results
in users being prompted for permissions, which leads to many users uninstalling or disabling the
extension.

As of August 2018, ​more than 80% of the top 1000 (internal-only link) extensions request
access to all domains or an all-domains-like pattern (e.g., ​*://*.com/*​).

https://docs.google.com/document/d/1CqT8oSYH8BXZIY5Homm6WYv2YsNKA3iOak5R7OW5fTM/edit
https://chrome.google.com/webstore/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm?hl=en
https://chrome.google.com/webstore/detail/high-contrast/djcfdncoelnlbldjfhinnjlhdjlikmph?hl=en
https://chrome.google.com/webstore/detail/reddit-enhancement-suite/kbmfpngjjgdllneeigpgjifpgocmfgmb?hl=en
https://chrome.google.com/webstore/detail/reddit-enhancement-suite/kbmfpngjjgdllneeigpgjifpgocmfgmb?hl=en
https://docs.google.com/spreadsheets/d/19lKAR1yDZaU3-DDYds_4FjUfvjcBDsUOhCJyw3mtpIM/edit#gid=0

One alternative to requesting access to all URLs is to request access to an arbitrary URL
through the user of the ​activeTab permission. This permission allows the extension to run on
any arbitrary site ​once invoked by the user while the tab remains on the origin​. This is an
important permission, since many extensions may need to act on an unknown number of sites,
but not want to run without the user's knowledge (such as an extension to ​dim the background
DOM during video playback or ​pin an image​). Unfortunately, this permission has seen very
limited usage (roughly 3% of the top 1000 extensions), with most extensions simply opting for
access to all domains (indeed, the two examples above, though they could use ​activeTab​, do
not).

Another alternative to broad permission requests is ​optional permissions​, which allow
developers to request a given permission at runtime. This can give the user greater context into
the permission request, and doesn’t require them to approve the permission prior to installation.
Like ​activeTab​, optional permissions are very underutilized (roughly 6% of the top 1000
extensions).

In Manifest V3, we want ​activeTab​-style host permissions to be the default, with a number of
extra options. Instead of being granted access to all URLs on installation, extensions will be
unable to request ​<all_urls>​, and instead the user can choose to invoke the extension on
certain websites, like they would with ​activeTab​. Additional settings will be available to the
user post-installation, to allow them to tweak behavior if they so desire.

This has a number of advantages. In the default case (click-to-run), it is clear to the user when
the extension is running, and has a safe default (not running on any site). When the user
chooses to invoke the extension on a given site, there is implicit understanding that the
extension will "see" the contents of the page. Finally, this avoids giving the users an ultimatum.
Currently, we force users to accept all permissions and install the extension, or accept none and
refuse the extension. This provides a middle ground - install the extension, but use it on the
user's terms.

This is also being implemented for Manifest V2. See the Runtime Host Permissions ​design
document​ (internal-only) and ​PRD​ (internal-only).

Remotely-Hosted Code

Summary
Beginning in Manifest V3, we will disallow extensions from using remotely-hosted code. This
will require that all code executed by the extension be present in the extension’s package
uploaded to the webstore. Server communication (potentially changing extension behavior) will
still be allowed. This will help us better review the extensions uploaded, and keep our users
safe. We will leverage a minimum required CSP to help enforce this (though it will not be 100%
unpreventable, and we will require policy and manual review enforcement as well).

https://developer.chrome.com/extensions/activeTab
https://chrome.google.com/webstore/detail/turn-off-the-lights/bfbmjmiodbnnpllbbbfblcplfjjepjdn?hl=en-US
https://chrome.google.com/webstore/detail/turn-off-the-lights/bfbmjmiodbnnpllbbbfblcplfjjepjdn?hl=en-US
https://chrome.google.com/webstore/detail/pinterest-save-button/gpdjojdkbbmdfjfahjcgigfpmkopogic?hl=en
https://developer.chrome.com/apps/permissions
https://docs.google.com/document/d/1pvTGClsse9FX9VVo_-OoSTIU5h-wJFN6tatplKIDIkU/edit
https://docs.google.com/document/d/1pvTGClsse9FX9VVo_-OoSTIU5h-wJFN6tatplKIDIkU/edit
https://docs.google.com/document/d/1CTluTaLEVi6GBjhhZ_Dp6iSpYmEvQP42YTQv6GJLU_s/edit#heading=h.h04xekl3mbxt

See the full document ​here​ (internal only).

Cross-Origin Communication

Summary
Extension origins will continue to be able to make cross-origin requests to any sites they have
permission to access. Content scripts will have the same permission as the page they are
injected in.

Description
Extensions currently have the ability to perform cross-origin requests to any domain listed as
part of the extension’s host permissions, whereas these would normally be blocked by the
Same Origin Policy and subject to ​Cross-Origin Resource Sharing (CORS). These requests
can be made from either one of the extension’s pages or from its content scripts. Unfortunately,
the fact that these are allowed in content scripts is detrimental to the security guarantees of the
site isolation project, since it limits our ability to determine, from the browser process, if a
request should be allowed for a renderer. This is because we can no longer block a request
from a renderer hosting ​evil.com to ​google.com ​, since the request could have been made
on behalf of an extension’s content script on ​evil.com ​.

Beginning in Manifest V3, content scripts will not be given special privileges regarding the
requests they can make. If a content script needs access to data fetched from a cross-origin
server that requires authentication, it can proxy the request through its background page using
extension messaging​.

Extension pages can continue to make authenticated requests to any origin for which they have
permission. There are a number of use cases that require this. Additionally, if an extension
already has permission to that host, preventing these requests would be meaningless, since the
extension could simply script the host instead.

Manifest Host Permission Specification

Summary
Move host permission specification in the manifest to a separate key, ​host_permissions​. The
permissions​ manifest key will only be used for API permissions. Host permissions should omit
the path. Specific host permission patterns may be limited to a certain number.

Description
Today, the ​permissions​ manifest key contains both API permissions (like ​tabs​) and host
permission patterns (like ​https://example.com/*​, ​*://*/*​, or ​<all_urls>​). With the origin

https://docs.google.com/document/d/1lK2r82iG6cnMgAhGrhr0OXEUZV-ALfah61_Uyloim9s/edit#
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://www.chromium.org/Home/chromium-security/site-isolation
https://developer.chrome.com/extensions/messaging
https://example.com/*

access changes as a result of the RuntimeHostPermissions feature, specifying these
permissions in the same key as permissions that will be auto-granted can cause developer
confusion. Additionally, host permissions and API permissions are significantly different already
in terms of format, capability granted, and treatment.

In Manifest V3, extensions will specify host permissions in a new ​host_permissions​ key. The
permissions​ and ​optional_permissions​ manifest keys will be reserved for API permissions.
Since host permissions are going to require runtime approval by the user, they will not need a
separate ​optional_host_permissions​ entry (whether such permissions will be removable via
the ​permissions.remove​ API method is TBD.)

Open question: Should ​activeTab​ be removed in favor of specifying ​<all_urls>​ in the
host_permissions​ key of the manifest?

Detailed design doc required.

Remove Support for NaCl/PNaCl

Summary
Extensions will no longer be allowed to use NaCl and PNaCl. Instead, they should use Web
Assembly.

Description
NaCl and PNaCl have been ​deprecated​ for the web since May, 2017. We have allowed
extensions to continue using these technologies. However, WebAssembly is now mature
enough to serve as an alternative. Extensions should use WebAssembly instead, which will
allow Chrome to fully remove support for NaCl and PNaCl.

Promise-Based APIs

Summary
Extension APIs will be promise-based. The older callback version will continue to be supported.

Description
JavaScript Promises are a tool used in asynchronous programming that allows for easier
chaining of calls and cleaner code. Promises also provide an ability to indicate failure via a
promise rejection​. Using promises for extension APIs would be significantly cleaner and more
modern than the current callback-based approach, where errors are surfaced through
chrome.runtime.lastError​. There is currently ​a bug to migrate extension APIs to be
promise-based.

https://blog.chromium.org/2017/05/goodbye-pnacl-hello-webassembly.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/reject
https://bugs.chromium.org/p/chromium/issues/detail?id=328932

One potential downside is that this would not allow us to optimize API return values if the
extension provided a callback (since we would not know if the promise was going to be used or
not). However, we currently do this exceedingly rarely, and very few APIs have expensive
return values.

This would be a good step for the platform as a whole, to bring the APIs more closely to modern
web APIs, and would also make development of extensions easier and closer to web
development. Additionally, this is a helpful motivation for developers to upgrade to manifest V3,
as it is a widely-desired feature.

In order to maintain backwards compatibility (and not force developers to rewrite their extension
more than they already have to), providing a callback to an API method will continue to work. If
a callback is provided, a promise will not be returned.

P2 Changes
The following are changes that are being discussed for Manifest V3, but are not fully decided
yet. These may or may not ship with the initial version of Manifest V3, and could be added
subsequently.

Web-Accessible Resource Hardening
Web-accessible resources control which resources can be embedded in a web page. For
instance, an extension that embeds an iframe in the web page must specify the iframe’s HTML
file in its manifest. This prevents web pages from being able to embed extension resources that
shouldn’t be exposed to the web.

This is most important for security - extensions are more protected from third-party interaction if
they are not embedded in the DOM. It is also important for privacy, as embedding extension
resources in the DOM is an easy way to identify if the extension is installed, which should be
generally opaque to sites (unless the extension takes some action).

Web-accessible resources were launched in Manifest Version 2, but there are two areas for
improvement.

Stricter Resource Restrictions
Currently, any resource loaded by an extension frame is allowed to load. This means that if
iframe.html includes ​some_script.js​, only ​iframe.html need be present in the
web_accessible_resources section of the manifest. This addresses most major concerns,
particularly since site isolation is now enabled, but fails to ensure that the developer has total
control over what may or may not be embedded in an untrusted frame.

https://developer.chrome.com/extensions/manifest/web_accessible_resources

With Manifest V3, we can tighten these restrictions and require any resource that will be loaded
in an untrusted frame to be specified in the ​web_accessible_resources​.

Unique Identifiers
Currently, resources are embeddable by referencing their URL, which is
chrome-extension://<extension-id>/<resource-path>​. However, this means that any
site that knows the extension ID and file structure (which are both trivially determined) can
attempt to embed an extension resource. This is unfortunate for extensions that want to
conditionally embed extension resources in a web page, but only if initiated by the extension
itself. This also leads to frequent fingerprinting of popular extensions that expose web
accessible resources.

We could improve this by (optionally) allowing resources to only be exposed through a unique
identifier, rather than through their path. The extension (e.g. in a content script) could use an
API to retrieve this identifier. This way, untrusted web pages would be unable to embed
resources without the extension’s cooperation.

Dynamic Content Scripts
With the changes to origin access to restrict extensions’ ability to automatically inject scripts, the
specification of scripts to always run on a site begins to make less sense. In particular,
extensions may wish to surface the request to run to the user in different contexts, and may
wish to provide more information. This is good, as it will (hopefully) allow the user to make more
informed decisions.

To aid in this, we can allow extensions to dynamically add and remove, or enable and disable,
content scripts. This would allow extensions to only add these scripts once they have
permission to do so.

There are additional situations in which this is beneficial, as well. Currently, the advice for
extensions wishing to dynamically inject scripts based on some knowledge at runtime is to use
the ​tabs.executeScript API; however, this is insufficient for certain use cases. In particular, this
cannot (reliably) insert a script before the page finishes loading, which is a feature that content
scripts provide. Allowing dynamic content scripts would solve this use case.

API Changes
The following are changes to specific APIs.

https://developer.chrome.com/extensions/tabs#method-executeScript

WebRequest

Summary
In Manifest V3, we will strive to limit the blocking version of ​webRequest​, potentially removing
blocking options from most events (making them observational only). Content blockers should
instead use ​declarativeNetRequest​ (see below). It is unlikely this will account for 100% of
use cases (e.g., onAuthRequired), so we will likely need to retain webRequest functionality in
some form.

Description
The current ​webRequest API allows extensions to intercept network requests in order to modify,
redirect, or block them. It is frequently used by content blockers. Currently, with the
webRequest permission, an extension can delay a request for an arbitrary amount of time, since
Chrome needs to wait for the result from the extension in order to continue processing the
request. The basic flow is that when a network request begins, Chrome sends information
about it to interested extensions, and the extensions respond with which action to take. This
begins in the browser process, involves a process hop to the extension's renderer process,
where the extension then performs arbitrary (and potentially very slow) JavaScript, and returns
the result back to the browser process. This can have a significant effect on every single
network request, even those that are not modified, redirected, or blocked by the extension
(since Chrome needs to dispatch the event to the extension to determine the result).

In Manifest V3, this API will be discouraged (and likely limited) in its blocking form. The
non-blocking implementation of the ​webRequest API, which allows extensions to observe
network requests, but not modify, redirect, or block them (and thus doesn't prevent Chrome from
continuing to process the request) will not be discouraged. As an alternative, we plan to provide
a ​declarativeNetRequest API (see below). The details of what limitations we may put in the
webRequest​ API are to be determined.

DeclarativeNetRequest

Summary
The new ​declarativeNetRequest​ API will be used as the primary content-blocking API in
extensions, as it is more performant and offers better privacy guarantees to users.

Description
The ​declarativeNetRequest API is an alternative to the ​webRequest API. At its core, this API
allows extensions to tell Chrome what to do with a given request, rather than have Chrome
forward the request to the extension. Thus, instead of the above flow where Chrome receives
the request, asks the extension, and then eventually gets the result, the flow is that the

https://developer.chrome.com/extensions/declarativeNetRequest

extension tells Chrome how to handle a request and Chrome can handle it synchronously. This
allows us to ensure efficiency since a) we have control over the algorithm determining the result
and b) we can prevent or disable inefficient rules. This is also better for user privacy, as the
details of the network request are never exposed to the extension.

This API is currently being implemented, and will be available to both the current manifest
version and Manifest V3, but will be the primary way to modify network requests in Manifest V3.

Browser Action and Page Action

Summary
We will merge ​browserAction​ and ​pageAction​ APIs in Manifest V3 into a single ​action​ API.

Description
The ​browserAction and ​pageAction APIs allow extensions to declare an “action” in their
manifest, which becomes the toolbar icon. When these APIs were originally created,
pageActions were designed to apply to a specific page, and would appear ephemerally in the
omnibox, while ​browserActions were designed to apply to the browser as a whole, and would
appear persistently in the toolbar.

This changed as part of the ​Extension Toolbar Redesign​, which gave every extension a
permanent UI surface in the toolbar or, if overflowed, the Chrome menu. This was intended to
increase extension visibility to users and help them understand which extensions were installed.
Overall, this change was a success (though of course not a panacea).

However, the difference between ​pageActions and ​browserActions is now heavily blurred,
and can cause more confusion than anything else. In Manifest V3, we can combine these into a
single ​action key in the extension’s manifest, and expose a single ​action API. Optionally,
developers could specify a ​“default_state” to control whether the extension was default-on
or default-off.

This simplified UI would reduce code complexity, as well as present a more unified and simple
UI for the platform.]

Old design doc​ (internal only). Updated (public) design doc needed.

chrome://favicon API

Summary
In Manifest V3, the ​chrome://favicon permission and utility will move to a new Chrome API
with the ​favicon​ permission and ​chrome.favicon​ namespace.

https://developer.chrome.com/extensions/browserAction
https://developer.chrome.com/extensions/pageAction
https://docs.google.com/document/d/1DybWM1mNCJSO2vyGdwxrl5njf8Fo74ZmwxwikcD1bko/edit
https://docs.google.com/document/d/1J6AXI-pkpnSueDH1pHSyj2y_W8Z5dLCFx1Zi9H4Ju_I/edit

Description
Currently, extensions can request ​chrome://favicon as host permission, and this

allows them to fetch a website’s favicon by fetching

chrome://favicon/​https://example.com​ (for ​example.com`’s favicon).

This has caused us endless grief. This is one of the few areas that extensions are allowed
access to the ​chrome:​-scheme (which is otherwise off-limits), and this permission is silently
added as an additional host permission if the extension requests ​<all_urls>​. Rather than
have this complexity, there will be a full extensions API (under ​chrome.favicon​) to support
retrieving a website’s favicon. This API would be available with either a new ​favicon
permission, or with granted host permission for the requested favicon.

(More detailed doc required.)

Capturing APIs
There are currently five different methods (​tabs.captureVisibleTab()​, ​tabCapture.capture()​,
tabCapture.getMediaStreamId()​, ​pageCapture.saveAsMHTML()​, and
desktopCapture.chooseDesktopMedia()​) across four different APIs to allow extensions to
capture the content of a user’s screen. Each of these has different capabilities and permission
models. In Manifest V3, we should coalesce all of these into a single API namespace,
chrome.capture​, and ensure that the API has a strong and clear permissions model.

This also helps “clean up” the ​chrome.tabs API, which currently has too many capabilities
beyond tab management.

See the main document ​here​.

APIs Replaced by the Web
The web has continued to evolve in the time since extensions were created. While many of the
extension capabilities are still fundamentally limited to extensions, web alternatives exist to
some APIs. When migrating to Manifest V3, we should take the opportunity to remove support
for features that are now part of the open web platform. Extensions are always designed to be
"the web plus some", but not an alternative to the web. There should never be an
extension-way and a web-way - if it's possible on the web platform, that should be the only way.

This helps us standardize both UIs shown to users and APIs used by developers, and also
allows us to advance with the open web platform.

The following APIs are now available on the web and should be removed.

● Extension Notifications​ (Replaced by ​Web Notifications​)

https://example.com/
https://developer.chrome.com/extensions/tabs#method-captureVisibleTab
https://developer.chrome.com/extensions/tabCapture#method-capture
https://developer.chrome.com/extensions/tabCapture#method-getMediaStreamId
https://developer.chrome.com/extensions/pageCapture#method-saveAsMHTML
https://developer.chrome.com/extensions/desktopCapture
https://docs.google.com/document/d/1Lqc_dgqCpGyummCczPnfF5BBMPE6SOvc2tN_d4QezPc/edit#
https://developer.chrome.com/extensions/notifications
https://developer.mozilla.org/en-US/docs/Web/API/notification

● clipboardRead/clipboardWrite? (The extension APIs may currently allow for copying
more data types than the web APIs; how widely used are these capabilities?)

API Updates For Service Worker
With ServiceWorkers as the background processes in Manifest V3, certain extension APIs will
need to be updated or removed because they may no longer make sense or be possible. One
major reason for this is that ServiceWorkers run on a separate thread in the renderer (similar to
other web Workers); thus, they have no access to the DOM. Any APIs that return a ​DOMWindow
or ​HTMLElement​ will need to be updated or removed.

These APIs include:

● chrome.extension.getViews()​: Returns a collection of extension views and frames. We
should be able to remove this in favor of ServiceWorker’s ability to ​get and claim related
clients​.

● chrome.runtime.getBackgroundPage()​: Returns the extension’s background page as a
DOMWindow object. Replace with ServiceWorker alternatives.

● chrome.app.window​ (only used for Chrome Apps)
● ...

Deprecated API Methods
There are a number of APIs or API methods that have been marked as deprecated for an
extended period of time, but have not been effectively discontinued. These should be removed.

Deprecated APIs:

● chrome.extension.sendMessage() (undocumented, but used)
● chrome.extension.connect() (undocumented, but used)
● chrome.extension.onConnect (undocumented, but used)
● chrome.extension.onMessage (undocumented, but used)
● chrome.extension.sendRequest()
● chrome.extension.onRequest
● chrome.extension.onRequestExternal
● chrome.extension.lastError
● chrome.extension.getURL()
● chrome.extension.getExtensionTabs()
● chrome.tabs.Tab.selected
● chrome.tabs.sendRequest()
● chrome.tabs.getSelected()
● chrome.tabs.getAllInWindow()
● chrome.tabs.onSelectionChanged
● chrome.tabs.onActiveChanged
● chrome.tabs.onHighlightChanged

https://developer.chrome.com/extensions/extension#method-getViews
https://developer.mozilla.org/en-US/docs/Web/API/Clients
https://developer.mozilla.org/en-US/docs/Web/API/Clients
https://developer.chrome.com/extensions/runtime#method-getBackgroundPage
https://developer.chrome.com/apps/app_window
https://developer.chrome.com/extensions/extension#method-sendRequest
https://developer.chrome.com/extensions/extension#event-onRequest
https://developer.chrome.com/extensions/extension#event-onRequestExternal
https://developer.chrome.com/extensions/extension#property-lastError
https://developer.chrome.com/extensions/extension#method-getURL
https://developer.chrome.com/extensions/extension#method-getExtensionTabs
https://developer.chrome.com/extensions/tabs#type-Tab
https://developer.chrome.com/extensions/tabs#method-sendRequest
https://developer.chrome.com/extensions/tabs#method-getSelected
https://developer.chrome.com/extensions/tabs#method-getAllInWindow
https://developer.chrome.com/extensions/tabs#event-onSelectionChanged
https://developer.chrome.com/extensions/tabs#event-onActiveChanged
https://developer.chrome.com/extensions/tabs#event-onHighlightChanged

● …

Unused, Unpopular, and Limbo APIs
API usage varies widely, with some being very prolific and others only being used by a small
handful of extensions. Given the resources available to the extensions team and the
maintenance cost of APIs, any APIs that are sufficiently unpopular should likely be removed.
This allows the team to execute more efficiently, as well as keeping the platform lean.
Additionally, a number of APIs have been kept in limbo for long periods of time, such as the
declarativeWebRequest API. These should be evaluated and either plan to launch, or
removed.

Extension API usage data can be found ​here​ (internal only).

APIs with exceedingly low usage that should be removed:

● …
APIs stuck in limbo to be removed:

● declarativeWebRequest​ (obsolete with ​declarativeNetRequest​)

Miscellaneous API Changes
Some APIs need to be changed for security or performance reasons, though they may not be
fully replaced or removed.

i18n.getMessage
i18n.getMessage is used to retrieve a localized message string. This is currently a synchronous
API (from the extension's perspective). However, the first time messages are loaded, this
involves a sync (!) IPC to the browser process to load the extension localization bundle on a
background sequence and return the result to the renderer. This process can take a significant
amount of time, since it involves IPC and disk IO. Since it is a synchronous API call, the
renderer cannot continue doing work in this time.

This is already bad, but is made worse by the fact that this API is exposed to content scripts,
which can prevent a page from loading. As such, extensions using this API during
early-injected content scripts may be significantly slowing down page load.

The alternative to this API is still TBD.

https://docs.google.com/spreadsheets/d/1hMMGsps0MX7SlU-szWHHmaCS0tLssqvhwD6ShIvRAAs/edit#gid=0

Migration
We will need to gradually migrate extensions over to Manifest V3. In some cases, this may be
as simple as incrementing the manifest version (if the extension was not using any APIs
affected by this change). However, in many cases, this will involve developer work. As such,
we will need to provide a migration period, incentives for migrating, and disincentives for
remaining on manifest version 2. Migration details can be found in ​this doc (internal only for
now).

Declined Changes
The following changes were discussed, but are not on the road map for Manifest V3.

Storage API
Storage on the web has come far. We currently provide a ​storage API to extensions, and have
different storage areas including local, sync, and managed. It may be worth pursuing removing
all of these but sync, and having extensions instead rely on web standard storage (such as
Indexed DB).

This will not be pursued because there is no good alternative on the web for sync storage,
which is an important feature to extensions. Given that, the benefit from deprecation is reduced
and it is not worth the investment (or cost to developers to migrate) at this time.

Extension Messaging
Extension messaging allows interaction between different portions of an extension. Extensions
can use this messaging to communicate between content scripts or extension pages. All of this
messaging is a hand-rolled implementation.

ServiceWorkers provide ​messaging between the ServiceWorker and claimed clients. This
would be sufficient for any communication between the service worker and claimed extension
frames; however, it would not be sufficient for communication between frames or with the
content script. The former may be used rarely enough (and with a workaround of bouncing a
message through the ServiceWorker) that we could only support messaging between a worker
and a content script.

ServiceWorker messaging has advantages over extension messaging, including being
standardized, likely better supported (and thus more efficient and less buggy), and supporting
Transferables​.

https://docs.google.com/document/d/1FZthsZHCxa-93QCmyhU08Ptlh3EGqbjuUlBPuvT5d-I/edit?usp=sharing
https://developer.chrome.com/extensions/storage
https://developer.chrome.com/apps/messaging
https://developer.mozilla.org/en-US/docs/Web/API/Client/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Transferable

This will not be pursued because we would continue requiring the messaging code from
extension processes to content scripts. Given that, the benefit from deprecation is reduced and
it is not worth the investment (or cost to developers to migrate) at this time.

Script Injection Main World Capabilities
Currently, extensions can inject scripts into web pages through ​content scripts or the
tabs.executeScript() method. In both of these cases, the renderer injects the script in an
isolated world - a separate v8::Context that is unique to the extension. This is important for two
main reasons:

1. It prevents the web page from being able to access extension API methods that might be
exposed to the content script (such as extension messaging, storage, etc).

2. It prevents collisions in JS. The extensions ​window.foo variable is not the same as the
page’s ​window.foo​ variable.

However, this restriction is designed to be one-way: the web page cannot enter the extension’s
isolated world. Going the other direction, and having the extension execute code in the main
world, is trivial (and most easily accomplished by simply appending a ​<script> tag to the
page). This can lead to pain points for web developers, since the advantage of the isolated
world is gone, and the extension can mutate the web page’s variables. In extreme cases, this
could include doing things like mutating ​Array.prototype​ or other similar built-in functionality.

This type of mutation is bad for web developers (who have to deal with it) and bad for users
(because developers have to find workarounds, which often come with performance costs, or
don’t find workarounds, and websites are broken).

Hypothetically, we could restrict an extension’s capability to inject scripts into the main world of
a web page, and require that all interaction happen in the isolated world, or else require a
separate API to do so (thus increasing our ability to audit uses, as well as preventing accidental
use). Removal would potentially break some valid use cases, but it is not clear how many.

However, the feasibility of this and the amount of work entailed are both unknown. There are a
variety of edge cases that would need to be taken into account, and this would largely need to
be a fool-proof change (or else extensions could work around it).

Likely, the extensions team will have neither the domain knowledge nor the resources to staff
this project, and it would have to be pursued by the blink team if there is interest in doing it.

https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/tabs

